Isolation and transcription profiling of purified uncultured human stromal stem cells: alteration of gene expression after in vitro cell culture.
نویسندگان
چکیده
Stromal stem cells proliferate in vitro and may be differentiated along several lineages. Freshly isolated, these cells have been too few or insufficiently pure to be thoroughly characterized. Here, we have isolated two populations of CD45-CD34+CD105+ cells from human adipose tissue which could be separated based on expression of CD31. Compared with CD31+ cells, CD31- cells overexpressed transcripts associated with cell cycle quiescence and stemness, and transcripts involved in the biology of cartilage, bone, fat, muscle, and neural tissues. In contrast, CD31+ cells overexpressed transcripts associated with endothelium and the major histocompatibility complex class II complex. Clones of CD31- cells could be expanded in vitro and differentiated into cells with characteristics of bone, fat, and neural-like tissue. On culture, transcripts associated with cell cycle quiescence, stemness, certain cytokines and organ specific genes were down-regulated, whereas transcripts associated with signal transduction, cell adhesion, and cytoskeletal +CD105+CD31- cells from human adipose tissue have stromal stem cell properties which may make them useful for tissue engineering.
منابع مشابه
Isolation and culture of human endometrial derived cells as an in vitro model for future implantation studies
Introduction: Monthly regeneration of endometrium after cyclical mensturation confirmed the ability of specific population of the cells that presence in the basalis layer and undergone consecutive hormonal changes that could prepared the endometrial layer for probable implantation. These cells, known as, stem cell. The aim of this study was the isolation and culture of human endometrial derive...
متن کاملPretreatment of Mesenchymal Stem Cells and Stromal-derived Factor-1α Delivery from Chitosan-based Injectable Hydrogels for Better Cell Guidance and Retention
Clinical applications of mesenchymal stem cells (MSCs) rely on their capacity to home and engraft in the appropriate target tissues for a long time. Homing and engraftment capacity of these stem cells depend on the expression of Chemokines and their receptors. Ex vivo expanded MSCs exhibit homing potential when grafted to injury tissue but their homing efficiency has been observed very poor bec...
متن کاملBone marrow stromal cells and their application in neural injuries
Background: This article reviews experimental and clinical studies in which neural injuries repaired with bone marrow stromal cells. History: Bone marrow contains two kinds of stem cells: hematopoietic and nonhematopoietic (stromal) stem cell. In vitro studies indicate that bone marrow stromal cells have the capacity of differentiation into other cells (such as neural cell) under treatment wit...
متن کاملExpression of Endoderm and Hepatic Specific Genes after in vitro Differentiation of Human Embryonic Stem Cells
Background: Human embryonic stem cells (hESC), which are derived from the inner cell mass of the blastocysts, have been considered to be pluripotent cells. In this study we examine the differentiating potential of hESC into hepatocytes by characterization of the expression of endoderm and liver-specific genes. Methods: hESC were cultivated in suspension to form aggregates, the embryoid bodies. ...
متن کاملIsolation and in vitro Characterization of Mesenchymal Stem Cells Derived from the Pulp Tissue of Human Third Molar Tooth
Background: It is still controversial that the stem cells isolated from human dental pulp meets the criteria for mesenchymal stem cells (MSCs). The aim of the present study was to examine whether or not they are MSCs, or are distinct stem cells population residing in tooth pulp. Methods: Adherent fibroblastic cells in the culture of pulp tissue from human third molars were propagated through se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology of the cell
دوره 16 3 شماره
صفحات -
تاریخ انتشار 2005